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ABSTRACT

While the main features of elastic, diffractive and total cross sections are

described well by Regge theory, the measured rise of the proton-(anti)proton

single diffraction dissociation cross section with energy is considerably smaller

than the theoretical prediction based on factorization and a constant triple-

pomeron coupling. The observed energy dependence is obtained by renormal-

izing the pomeron flux “carried” by a nucleon to unity. Double diffraction

and double pomeron exchange cross sections are reevaluated and compared to

data, and a new interpretation of hard diffraction results emerges in which the

hard pomeron obeys the momentum sum rule.

1 Introduction

It is well known that pomeron exchange in Regge theory accounts for the main features of

high energy elastic, diffractive and total cross sections [1, 2]. In particular, for proton-

(anti)proton interactions, it accounts for the rise of the total cross section and the

shrinking of the forward elastic peak with energy, and also describes correctly the mass

and t dependence of single diffraction dissociation (SD). Furthermore, the concept of

factorization provides relationships between cross sections that pass successfully the test

of experimental observation [1].

Encouraged by this success, Ingelman and Schlein [3] proposed to extend factorization

to the domain of hard processes involving the pomeron, and calculated the SD high pT

dijet production cross section and rapidity distributions under various assumptions about

a pomeron structure function. In their calculation, they assumed that the pomeron has
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an independent existence inside a high energy proton (from now on we will use proton to

refer to proton or antiproton) and defined a “pomeron flux factor”, fP/p(ξ, t), through

the expression
d2σSD

dξ dt
= σPp

T fP/p(ξ, t) (1)

where σSD is the SD cross section, ξ is the fraction of the momentum of the proton

carried by the pomeron, which is related to the pomeron-proton center of mass energy

or diffractive mass M by ξ = M2/s, t is the square of the four-momentum transfer or

the negative mass squared of the (virtual) pomeron, and σPp
T is the pomeron-proton

total cross section. Using a value for σPp
T obtained from the SD cross section at fixed

target and ISR energies, the pomeron flux was evaluated at higher energies from the

SD cross section through the above equation and was used to calculate hard pomeron-

proton collisions in the usual way. When later the UA8 experiment studied diffractive

dijet production, it was found that [4] while the shape of the rapidity distribution of the

jets (we will use rapidity and pseudorapidity or η interchangeably) favors an almost fully

hard structure function for the pomeron, of the type Q(λ) = 6λ(1 − λ), where λ is the

momentum fraction of a parton inside the pomeron, rather than a soft structure function

of the type Q(λ) = 6(1 − λ)5, the rate of jet production can be accounted for by only

a fraction of the momentum of the pomeron being carried by hard quarks or gluons.

The UA8 rate result is summarized by the “discrepancy factor” required to multiply

the pomeron hard-quark or hard-gluon structure function to predict the measured dijet

rates. This factor is 0.46 ± 0.08 ± 0.24 (0.19 ± 0.03 ± 0.10) for a hard-quark(gluon)

dominated pomeron [5].

The discrepancy between the two UA8 results, namely the jet η distribution requiring

a hard pomeron structure function while the jet production rate being too small for

a pomeron with a fully hard structure function, could be reconciled by noting that

the pomeron, being a virtual state, need not observe the momentum sum rule [5, 6].

However, such a picture is not very satisfactory, as it puts into question the notion

that the pomeron could have a structure function at all. Below, we show that this

discrepancy can be attributed to the pomeron flux factor normalization, and that by

renormalizing the flux to unity, i.e. to one pomeron per incident proton, the UA8 rate

becomes consistent with the momentum sum rule. As a check of our flux normalization

procedure, we show that the normalized flux predicts correctly the energy dependence of

the SD cross section using an energy independent triple-pomeron coupling. In contrast,

an unnormalized flux leads to a SD cross section which increases at a much faster rate

than that observed experimentally, and predicts a rate several times higher than the

measured cross section at the Tevatron.
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2 Pomeron flux factor

It would appear that the flux factor defined by Eq. 1 could be obtained by dividing the SD

differential cross section by σPp
T . This is what was done by Ingelman and Schlein in their

original calculation [3], and more recently by Bruni and Ingelman in a calculation of the

rates expected for diffractive W production at the Tevatron [7]. The latter authors, for

example, use a constant pomeron-proton total cross section of 2.3 mb and parameterize

the flux factor as

fP/p(ξ, t) =
1

2

1

ξ

[

6.38 e8t + 0.424 e3t
] 1

2.3
(2)

This expression for the pomeron flux leads to a total integrated SD cross section of 9.1

mb for ξ < 0.05 at
√

s=546 GeV, in agreement with the value of 9.4 ± 0.7 mb reported

by the UA4 experiment [8] (the cross section is multiplied by a factor of 2 to account

for the dissociation of the other nucleon).

One problem with this approach is that it does not take into account the dependence

on ξ, expected in Regge theory, of the pomeron-proton total cross section and of the

t slope-parameter. Another problem is that the integral (for the standard diffractive

region ξ < 0.1) of the flux factor over t and ξ, which represents the total number of

pomerons in the proton that participate in the diffractive interaction, grows with energy

and has the value of 2.2 (2.6) at
√

s=630 (1800) GeV. One may, therefore, ask the

question: what does it really mean to have, say, two pomerons per proton? How can

two diffractive events be produced in the same pp̄ collision? Below we will show that

this unnormalized flux leads to unphysical results, and that physically consistent results

can be obtained only by normalizing the flux to unity. But first we discuss a flux factor

that is consistent with Regge theory.

In terms of the pomeron trajectory,

α(t) = 1 + ǫ + α′t (3)

the total, the elastic, and the SD pp̄ cross sections can be written as (see Fig. 1)

σT = β2(0)sα(0)−1 = σpp̄
0 sǫ (4)

dσel

dt
=

1

16π(h̄c)2
β2

1(t)β
2
2(t) s2[α(t)−1] =

σ2
T

16π(h̄c)2
e(2α′lns)t F 4(t) ≈ σ2

T

16π(h̄c)2
ebel(s)t (5)

F 4(t) ≈ eb0,elt ⇒ bel(s) = b0,el + 2α′lns (s in GeV2) (6)

d2σSD

dtdξ
=

1

16π(h̄c)2s
β2

1(t)
(

s

M2

)2α(t)

β2(0)g(t)
(

M2
)α(0)

=
σpp̄

0

16π(h̄c)2
ξ1−2α(t) F 2(t)σPp

T

(7)
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where β(t) is the pomeron coupling to the proton, g(t) the triple-pomeron coupling, M

the diffractive mass, F(t) the proton form factor, and σPp
T the pomeron proton total

cross section given by (see Eq. 4)

σPp
T = β1(0)g(t)

(

M2
)α(0)−1

= σPp
0

(

M2
)ǫ

(8)

where M2 is in GeV2, and in writing β1(0)g(t) = σPp
0 we have assumed that the triple-

pomeron coupling constant, g(t), is independent of t [1]. From Eqs. 1 and 7 it is now

clear that the flux factor can be expressed in terms of the total cross section, the elastic

form factor, and the pomeron trajectory parameters as follows:

fP/p(ξ, t) =
d2σSD/dξ dt

σPp
T

=
σpp̄

0

16π(h̄c)2
ξ1−2α(t)F 2(t) (9)

For the numerical evaluation of fP/p(ξ, t) we use values obtained from the recent CDF

results in Ref. [9]: σp̄p
T (s) = 80.03 ± 2.24 mb at

√
s=1800 GeV, ǫ = 0.115 ± 0.008, and

α′ = 0.26 ± 0.02. The value of ǫ is the weighted average of three values: one obtained

from the rise of the total cross section with energy, ǫ = 0.112 ± 0.013, and the other

two from the ξ-dependence of the SD cross section at
√

s =546 GeV, ǫ = 0.121± 0.011,

and at 1800 GeV, ǫ = 0.103 ± 0.017. The value of α′ is obtained from a fit to the

form of Eq. 6 of experimentally measured elastic scattering slope parameters at small-t

by CDF and at lower energies at the ISR (see [9]). From the above values we obtain

σpp̄
0 = σpp̄

T s−ǫ = 14.3 mb and
σpp̄
0

16π(h̄c)2
= 0.73 GeV −2. Note that at an energy as high as√

s=1800 GeV the terms in the cross section that fall as 1/
√

s or faster are negligible

and therefore Eq. 4 can be used directly to evaluate σpp̄
0 . The nucleon form factor,

F (t), is obtained from elastic scattering. In the small-t region, the t-dependence of

elastic scattering is represented well by F 4(t) ≈ eb0,elt. From the elastic slope parameter

at
√

s =1800 GeV, bel = 16.98 ± 0.25 GeV −2 [9], using α′ = 0.26 we obtain (Eq. 6)

b0,el = bel − 2α′lns = 9.2 GeV −2 and hence F 2(t) ≈ eb0,SDt = e(1/2)b0,elt = e4.6t. This is

consistent with the value b0,SD = 4.2 ± 0.5 GeV −2 measured in [9] at
√

s = 1800 GeV.

However, this expression underestimates the cross section at large t-values, and this is

the reason for using two exponentials in Eq. 2.

Another expression for the flux factor consistent with Regge theory was proposed by

Donnachie and Landshoff (DL) [6], who argue persuasively that the pomeron couples

to quarks like an isoscalar photon and therefore the relevant form factor is F1(t), the

isoscalar form factor measured in electron-nucleon scattering

F1(t) =
4m2 − 2.8t

4m2 − t

[

1

1 − t
0.7

]2

(10)

where m is the mass of the nucleon. The DL flux factor is given by

fP/p(ξ, t) =
9β2

0

4π2
ξ1−2α(t)F 2

1 (t) (11)
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where β0 ≈ 1.8 GeV −1 is the pomeron-quark coupling. With this value for β0 we

obtain
9β2

0

4π2 = 0.74, which is to be compared with the value of
σpp̄

0

16π(h̄c)2
= 0.73 of Eq. 9.

Since the discrepancy factor in the UA8 analysis is based on the DL form factor with a

pomeron trajectory α(t) = 1.08 + 0.25t [5], we will use this trajectory and Eq. 11 when

we recheck the momentum sum rule for the hard pomeron with a normalized pomeron

flux. However, in deriving the energy dependence of the SD cross section below, we will

make use of the flux given by Eq. 9 with a pomeron trajectory α(t) = 1.115 + 0.26t and

F 2(t) = e4.6t, since it corresponds to the expression used to derive the integrated SD

cross sections from the (more accurate at high energies) CDF data.

3 Single diffraction dissociation

The integral of the SD cross section can be written in terms of M2 and t as (see Eqs. 1,

7 &8 and use ξ = M2/s)

σSD = C s2ǫ σPp
0

∫ t=∞

t=0

∫ M2=0.1s

M2
0

(s/M2)2α′t

(M2)1+ǫ F 2(t)dtdM2 (12)

where s and M2 are in GeV2, C=0.73, ǫ = 0.115, α′ = 0.26, F (t) the proton form

factor, and M2
0 = 1.4 GeV 2 is the effective diffractive threshold [9]. The only unknown

parameter in this expression is σPp
0 , the pomeron-proton total cross section at M2 = 1

GeV2. This formula yields a ratio of the diffractive cross section at
√

s=546 to that

at
√

s=20 GeV of 4.5, which is much larger than the experimental value of ≈ 1.6 (see

discussion on p. 5546 of Ref. [9]). Clearly, the above expression does not give the correct

energy dependence for σSD. The difference from experiment is almost entirely due to

the factor s2ǫ, as pointed out in [9]. The SD cross section as given by Eq. 12 becomes

larger than the total cross section at higher energies, violating unitarity.

Let us now insist that no more than one pomeron per incident proton be allowed to

participate in a diffractive process, i.e let us re-normalize the flux factor to unity:

fs(ξ, t) ≡
fP/p(ξ, t)dξdt

N(s)
=

fP/p(ξ, t)dξdt
∫ ξmax

M2
0 /s

∫

∞

t=0 fP/p(ξ, t)dξdt
(13)

The integrated flux factor (ξmax = 0.1) of Eq. 9 with F 2(t) = e4.6t is N(s) = 1 at√
s = 20 GeV and increases with energy approximately as s2ǫ reaching the value of 9.2

at
√

s = 1800 GeV. The normalized integrated SD cross section is given by

σSD,N =< σPp
T >fs

= σPp
0 sǫ

∫

ξǫfs(ξ, t)dξdt (14)

where we have used Eq. 8 with (M2)
ǫ
= sǫξǫ. Again, the only unknown in this equation

is σPp
0 . The total single diffraction cross section calculated from Eq. 14 with σPp

0 =2.6
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mb is compared in Fig. 2 with experimental data from ISR [11], UA4 [8], E710 [12],

and CDF [9]. For this particular comparison we used data and calculated cross sections

for ξ < 0.05 in order to reduce possible non-pomeron contributions to the data [1].

Considering the systematic uncertainties represented by the scatter in the data points,

the agreement is good. Without renormalizing the pomeron flux, the calculated cross

section at
√

s=1800 GeV would be almost an order of magnitude higher! From Eq. 14

it is clear that the normalized cross section rises with energy at a rate slower than sǫ,

staying safely below the total pp̄ cross section, as required by unitarity. An approximate

expression for the rise of the total SD cross section with energy is given by (see Fig. 2)

σT
SD = 4.3 + 0.3 lns mb (s in GeV2) (15)

4 Pomeron-proton total cross section

The pomeron-proton total cross section is related intimately to the normalized single

diffraction cross section through Eq. 14. Fitting the data with this equation not only

yields the constant σPp
0 but also verifies the assumed ∼ (M2)ǫ energy dependence, where

M2 = ŝ is the pomeron-proton center of mass energy. From this fit we therefore infer

that

σPp
T = 2.6 ŝǫ

mb (s in GeV2) (16)

where ǫ = 0.115 is the offset from unity of the intercept of the pomeron trajectory at

t = 0. Thus, the pomeron behaves like a hadron. The ratio of σPp
0 to σpp̄

0 is

σ
Pp/pp̄
0 = 0.18 (17)

Since the uncertainty in the value of ǫ affects both the numerator and denominator of

this ratio in approximately the same proportion, the value of the ratio is not sensitive to

the error in ǫ. The same is true for the ratio of the triple-pomeron to the pomeron-quark

coupling constants discussed below.

5 Triple-pomeron coupling constant

From σPp
0 we obtain the value of the triple-pomeron coupling constant (use Eqs. 8 &4),

assuming that it is independent of t:

g(t) ≡ g(0) =
g(t)β(0)

β2(0)
=

σPp
0

(σpp̄
0 )

1
2

= 0.69 mb
1
2 = 1.1 GeV−1 (18)
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This value of g(t) is almost a factor of two higher than the value g(t) = 0.364±0.025 mb
1
2

reported in Ref. [10]. This apparent discrepancy is due to the different parameterization

(ǫ = 0 and σpp̄
0 = σpp̄

T ) used in evaluating g(t) from the data in [10].

If the pomeron couples to quarks, as proposed by DL [6], the pomeron-quark coupling

constant may be evaluated by equating the coefficients of Eqs. 9 &11, which yields

β0 =

√
πσ0

6(h̄c)
= 1.8 GeV−1 (19)

The ratio of the triple-pomeron to the pomeron-quark coupling, g(t) to β0, is given by

g(t)

β0
= 0.61 (20)

Again, while the values of both g(t) and β0 are correlated with the value of ǫ, their ratio

is insensitive to the uncertainty in ǫ.

6 Double diffraction dissociation

In double diffraction dissociation (DD) both nucleons dissociate, as shown in Fig. 3.

Assuming pomeron exchange and factorization, the DD cross section may be obtained

from the SD and elastic scattering cross sections using Eqs. 1, 13 &5,

d3σDD

dM2
1 dM2

2 dt
=

1

dσel/dt

d2σ1

dM2
1dt

d2σ2

dM2
2 dt

=

(

σPp
0

4
√

πh̄c

)2 (
sǫ

N(s)

)2
e
2α′ln

[

s (1 GeV 2)

M2
1

M2
2

]

t

(M2
1 M2

2 )1+ǫ
(21)

where N(s) is the integral of the pomeron flux factor (see Eq. 13). The nucleon form

factor, F (t), drops out in the division, so that the t-dependence is given by the slope

parameter

bDD = 2α′ln

[

s (1 GeV 2)

M2
1 M2

2

]

= 2α′ ∆y
[

GeV−2
]

(22)

where ∆y is the rapidity gap between the two diffractive clusters (see Fig. 3). If we

now apply the requirement ∆y > 2.3, which corresponds to the coherence requirement

(M2/s) < 0.1 in single diffraction – since ln(s/M2) > −ln(0.1) = 2.3, we obtain the

coherence condition for double diffraction:

M2
1 M2

2

s (1 GeV 2)
< 0.1 (23)

With this condition as a constraint the bDD parameter is positive for all mass com-

binations. If ∆y were to become negative, which would correspond to mass clusters
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overlapping in rapidity, bDD would become negative and the cross section would in-

crease with t. We therefore interpret Eq. 23 to mean that coherence breaks down for

rapidity gaps smaller than ∼ 2.3 units, and integrate Eq. 21 subject to the coherence

condition to obtain the total DD cross section:

σDD = K(s)
∫ 0.1s/1.4

M2
1=1.4

∫ 0.1s/M2
1

M2
2=1.4

dM2
1 dM2

2

(M2
1 M2

2 )1+ǫ ln(s/M2
1 M2

2 )
(24)

where K(s) =
1

2α′

(

σPp
0

4
√

πh̄c

)2 (
sǫ

N(s)

)2

Table 1 lists cross sections at several energies calculated using this equation. The de-

crease of the cross section with energy is due to the faster increase of the elastic relative

to the diffractive cross section.

Table 1: Total double diffraction cross sections.√
s [GeV ] σT

DD [mb]

30 3.1
200 2.3
630 1.7
900 1.6
1800 1.3
14000 0.75

A practical way of measuring the inclusive double diffractive cross section at hadron

colliders is to look for events with a rapidity gap centered at y = 0. Table 2 lists

the cross sections expected at the Tevatron,
√

s = 1800 GeV, as a function of the

width ∆y of the rapidity gap. These cross sections were calculated from Eq. 24 with

M2
1,max = M2

2,max =
√

s e−∆y/2. As shown, the cross section decreases slowly as the

rapidity gap width increases.

Using the rapidity gap technique, the UA5 collaboration measured the DD cross sec-

tion at the CERN Spp̄S collider and reported values of 3.5 ± 2.5 (4.0 ± 2.2) mb at√
s = 200 (900) GeV, respectively [14]. These values are within 1 σ of those in Table 1,

but are systematically higher. This may be due to an underestimate of the detector ac-

ceptance for DD events, which was obtained with a Monte Carlo simulation where single

diffractive clusters were generated on each side and were allowed to reach independently

and simultaneously mass values up to M2
max = 0.05s. This procedure allows overlapping

diffractive clusters in violation of the coherence condition of Eq. 23, resulting in a lower

acceptance for DD events and hence a larger cross section.
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Table 2: σDD versus ∆y at the Tevatron.

∆y (central) σ∆y
DD [mb]

2.0 0.62
2.5 0.57
3.0 0.52
3.5 0.47
4.0 0.42
4.5 0.39

At the Tevatron, where the energy of
√

s=1800 GeV provides a rapidity range of 15

units, accurate measurements of DD cross sections as a function of rapidity gap width

can be performed using minimum bias data triggered by the “beam-beam” counters.

Such data are already available in the CDF and D0 experiments. The measurements

can best be done by fitting the particle multiplicity distribution in a given region of ∆η

centered at η = 0 and extracting from the fit the number of excess events in the zero

multiplicity bin. The fraction of these rapidity gap events to the total number of events

in the sample can then be compared directly with the values in Table 2 divided by the

non-diffractive inelastic cross section of 50 mb.

7 Double pomeron exchange

In double pomeron exchange (DPE) two pomerons, one from each incoming hadron,

interact to form a diffractive cluster of mass M centered at rapidity yM (see Fig. 3). The

cross section for DPE is obtained from the SD and total cross sections using factorization

(see [13]):
d4σ

dξ1dξ2dt1dt2
=

1

σpp̄
T

d2σ1

dξ1dt1

d2σ2

dξ2dt2
(25)

The mass of the cluster and the rapidity of its centroid are related to the variables ξ1,2:

M2 = s ξ1ξ2 (26)

yM =
1

2
ln

ξ1

ξ2

The condition ξ1,2 < 0.1 for SD translates to the condition

M2 < 0.01 s

9



Using Eqs. 4 &1 with a normalized pomeron flux, and changing the variables from ξ1,2

to M2 and y, we obtain the expression

d2σ

dM2dyM

= σpp̄
0

(

σPp
0

16π(h̄c)2

sǫ

N(s)

)2
{

(M2)1+ǫ
[

(b + α′ln
s

M2
)2 − (2α′yM)2

]}−1

(27)

where b = 4.6 is the slope parameter of the exponential proton form factor, F (t), used

here for simplicity. For a given mass M , yM varies within the range ±1
2
ln M2

0.01s
, so that

|2yM | < ln s
M2 and the term in the square brackets is a function decreasing logarithmically

with increasing M2. As a result, the DP cross section falls approximately as 1/M2. A

numerical integration of this equation for the range 1 GeV2 < M2 < 0.01s yields an

inclusive DPE cross section of 61, 76, 69 and 50 µb at
√

s= 50, 630, 1800 and 14000

GeV, respectively. The calculated value of 76 µb at 630 GeV is in agreement with the

experimental value of 30-150 µb reported by the UA8 experiment [15]. The DP cross

section is approximately constant through the entire range from the ISR to the LHC

collider energies. On a finer scale, it rises initially with energy and then falls as the lns

term in the denominator becomes comparable to b.

8 Hard diffraction

According to our renormalization scheme, all rate predictions for hard processes in

diffraction dissociation based on the procedure suggested by Ingelman and Schlein [3]

must be scaled down by the integral of the pomeron flux factor at the given energy.

Since the flux factor is unity at
√

s = 20 GeV and increases with energy as ∼ s2ǫ, the

scaling factor varies approximately as (
√

s/20)4ǫ. This renormalization of the flux low-

ers substantially all theoretical predictions on hard diffraction and changes drastically

the interpretation of experimental results in terms of the structure of the pomeron, as

discussed below.

8.1 Does the hard pomeron obey the momentum sum rule?

We are now ready to answer the question: does the hard pomeron reported by UA8 obey

the momentum sum rule? As mentioned above, the fact that the observed diffractive

dijet rate is considerably smaller than the rates predicted for a pomeron with a fully hard-

quark(gluon) structure function is generally interpreted as meaning that the momentum

sum rule is violated. However, the predicted rates were calculated with the unnormalized

DL flux factor of Eq. 11, whose integral over t and ξ within the range 0 < |t| < ∞ and

1 GeV 2/s < ξ < 0.1 is 3.9 (using β2
0 = 3.5 GeV−2 as in [5]). Therefore, with a normalized
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flux factor the predictions of [5] for the dijet rates become 3.9 times smaller. This

correction moves the UA8 “discrepancy factors” of 0.46±0.08±0.24 (0.19±0.03±0.10)

for a hard-quark(gluon) dominated pomeron to the values 1.79 ± 0.31 ± 0.93 (0.74 ±
0.11 ± 0.39), which are consistent with unity and therefore no longer in disagreement

with the momentum sum rule.

8.2 Diffractive W’s at the Tevatron and HERA physics

Diffractive W production probes the quark structure function of the pomeron. Using

the flux factor of Eq. 2, Bruni and Ingelman predicted [7] that the ratio of diffractive to

non-diffractive W production at
√

s=1800 GeV is expected to be ∼ 17% (0.8%, 0.3%)

for a hard-quark (hard-gluon, soft-gluon) pomeron structure function. With the flux

factor of Eq. 9, which has a different ξ and t dependence, the predicted rate under the

same kinematical conditions goes up to ∼ 24%. However, using the flux scaling factor of

(1800/20)4×0.115 at
√

s=1800 GeV, brings the prediction down to ∼ 3%, the exact value

depending somewhat on the parameters used in Eq. 9. Therefore, in order to probe the

pomeron for an effective ∼ 15% hard-quark component in its structure function, the

level predicted by Donnachie and Landshoff [6] on the basis of their analogy between

the pomeron and the photon in the way they couple to quarks, the diffractive to non-

diffractive W production ratio must be measured with an accuracy smaller than 0.5%.

Hard diffraction has also been under study in e−p collisions at
√

s =314 GeV at

HERA, where virtual photons from 30 GeV electrons collide with pomerons from 820

GeV protons. Diffractive events are identified by the rapidity gap method and the results

are interpreted in terms of the structure function of the pomeron. As discussed above,

in drawing conclusions about the pomeron structure from the data by comparing them

to theoretical predictions based on the Ingelman-Schlein model, the predictions must

be reduced by the flux scaling factor, which at the typical γ⋆p center of mass energy of

∼ 150 GeV is ∼ 2.5.

8.3 Events with a rapidity gap between two jets

The exchange of a hard pomeron, which is a color-singlet or colorless QCD construct,

between a proton and an antiproton is expected to produce dijet events with a rapidity

gap between the two jets. It was estimated [16] that the ratio, Rjets, of the cross section

for color-singlet exchange to single gluon exchange events with the same kinematics is

≈ 0.1 < |S|2 >, where |S|2 is the “survival probability” for the gap, placed at 3–30%

[16, 17]. According to this estimate, Rjets should not depend strongly on the rapidity
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gap width. At the Tevatron collider at
√

s = 1800 GeV, the D0 collaboration reported

an upper limit of 1.1% (95% CL) for such events [18], and CDF reported a signal

of Rjets = 0.85 ± 0.12(stat.)+0.0024
−0.0012(syst.) [19], which is in agreement with the above

prediction. Typical rapidity gaps studied were around 2 units.

As can be seen from Table 2, the ratio of all events with a rapidity gap of two units

to all the non-diffractive inelastic events at
√

s = 1800 GeV is 1.25% (the first number

in the Table divided by the non-diffractive inelastic cross section of 50 mb [9]). This

ratio, which we shall call Rsoft, is approximately the same as the ratio Rjets measured by

CDF! We therefore propose that the exchange of a pomeron produces the same fraction of

hard as soft interactions, which implies that the rapidity gap survival probability in dijet

production is close to 100%. A test for this model is provided by the rapidity gap width

and energy dependence it predicts for Rjets. The dependence on the rapidity gap width

at
√

s = 1800 GeV is that of Table 2. The dependence on energy is obtained by dividing

the DD cross sections given in Table 1 by the corresponding inelastic non-diffractive cross

sections, which can be obtained from the formulae given in this paper. At the LHC,√
s = 14 TeV, we predict that σT =128.5 mb, σel=44.1 mb, 2σSD=10.0 mb, σDD = 0.75

mb, σDP = 52 µb, σND=73.6 mb, σ∆y=2
DD =0.36, and therefore Rjets = Rsoft=0.36/73.6

=0.5% (for ∆y = 2), which is less than one half of the prediction for the Tevatron.

9 Conclusion

Regge phenomenology, with simple pomeron exchange and factorization, describes well

the general features of elastic, diffractive, and total cross sections. However, the energy

dependence of the single diffraction cross section is not predicted correctly by the theory.

In fact, in a model of simple factorizable pomeron exchange with a constant triple-

pomeron coupling, the diffractive cross section rises at a rate much larger than the total

cross section, violating unitarity at the TeV energy scale. Nevertheless, the concept of

factorization was extended to “hard diffraction” processes in a model that assumes that

a high energy proton carries along a “pomeron flux” that interacts with the other proton

producing jets, W’s, or involving other high pT phenomena. This model was employed

by the UA8 Collaboration to interpret the results of an experiment designed to probe

the structure of the pomeron in diffractive dijet production. The UA8 results indicate

that the pomeron has a hard partonic structure, but the reported “hard pomeron” does

not obey the momentum sum rule. In this paper we show that by renormalizing the

pomeron flux carried by a proton to unity, we obtain the correct energy dependence for

the single diffraction cross section, and that with a renormalized pomeron flux the UA8

hard pomeron results become consistent with the momentum sum rule.
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In addition to single diffraction, we have calculated cross sections for double diffraction

and double pomeron exchange and find agreement with available data. Our results for

double diffraction show a rapidity gap dependence that can be tested with accurate

measurements at the Tevatron. Furthermore, noting that our prediction for the ratio of

soft rapidity gap events (double-diffractive) to all non-diffractive events, Rsoft, is close to

the measured ratio for hard processes containing jets, Rjets, we propose that the observed

dijets with a rapidity gap are due to the pomeron and that Rjets = Rsoft. On the basis

of this model, we then use our calculations for double diffraction to predict that the

ratio Rjets will decrease slowly with energy to become 0.5% (for ∆y = 2) at the LHC.

Pomeron flux renormalization affects all predictions for hard diffraction processes

made with an unnormalized flux, like those of Refs. [3, 7]. Such predictions must gen-

erally be reduced by the integral of the flux factor used in deriving them, exercising

caution with regard to consistency between the parameters of the pomeron trajectory

and the other parameters in the flux factor.
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